-
Notifications
You must be signed in to change notification settings - Fork 14.6k
[NVPTX] Add im2colw/w128 modes support to TMA intrinsics #148863
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[NVPTX] Add im2colw/w128 modes support to TMA intrinsics #148863
Conversation
@llvm/pr-subscribers-llvm-ir @llvm/pr-subscribers-backend-nvptx Author: Durgadoss R (durga4github) ChangesThis patch adds support for the im2col-w/w128 and scatter/gather modes
Patch is 226.88 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/148863.diff 12 Files Affected:
diff --git a/llvm/docs/NVPTXUsage.rst b/llvm/docs/NVPTXUsage.rst
index 11017fe4e01b4..d28eb6860c33a 100644
--- a/llvm/docs/NVPTXUsage.rst
+++ b/llvm/docs/NVPTXUsage.rst
@@ -1072,6 +1072,8 @@ Syntax:
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.gather4.2d(ptr addrspace(7) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %x0, i32 %y0, i32 %y1, i32 %y2, i32 %y3, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch, i32 %flag_cta_group)
+
Overview:
"""""""""
@@ -1082,7 +1084,13 @@ global memory to shared::cluster memory (indicated by the ``g2s`` prefix)
in ``tile`` mode. In tile mode, the multi-dimensional layout of the
source tensor is preserved at the destination. The dimension of the
tensor data ranges from 1d to 5d with the coordinates specified
-by the ``i32 %d0 ... i32 %d4`` arguments.
+by the ``i32 %d0 ... i32 %d4`` arguments. In ``tile.gather4`` mode,
+four rows in a 2D tensor are combined to form a single 2D destination
+tensor. The first coordinate ``i32 %x0`` denotes the column index
+followed by four coordinates indicating the four row-indices.
+So, this mode takes a total of 5 coordinates as input arguments.
+For more information on ``gather4`` mode, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-tiled-scatter4-gather4-modes>`_.
* The last three arguments to these intrinsics are flags
indicating support for multicast, cache_hint and cta_group::1/2
@@ -1116,10 +1124,18 @@ Syntax:
.. code-block:: llvm
- declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch, i32 %flag_cta_group)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.3d(ptr addrspace(7) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch, i32 %flag_cta_group)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.w.3d(ptr addrspace(7) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %wHalo, i16 %wOffset, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch, i32 %flag_cta_group)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.w.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.w.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.w.128.3d(ptr addrspace(7) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %wHalo, i16 %wOffset, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch, i32 %flag_cta_group)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.w.128.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.w.128.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
Overview:
"""""""""
@@ -1131,10 +1147,105 @@ in ``im2col`` mode. In im2col mode, some dimensions of the source tensor
are unrolled into a single dimensional column at the destination. In this
mode, the tensor has to be at least three-dimensional. Along with the tensor
coordinates, im2col offsets are also specified (denoted by
-``i16 im2col0...i16 %im2col2``). The number of im2col offsets is two less
-than the number of dimensions of the tensor operation. The last three arguments
-to these intrinsics are flags, with the same functionality as described
-in the ``tile`` mode intrinsics above.
+``i16 im2col0...i16 %im2col2``). For the ``im2col`` mode, the number of offsets
+is two less than the number of dimensions of the tensor operation. For the
+``im2col.w`` and ``im2col.w.128`` mode, the number of offsets is always 2,
+denoted by ``i16 %wHalo`` and ``i16 %wOffset`` arguments. For more information
+on ``im2col.w`` and ``im2col.w.128`` modes, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-im2col-w-w128-modes>`_.
+
+The last three arguments to these intrinsics are flags, with the same functionality
+as described in the ``tile`` mode intrinsics above.
+
+For more information, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
+
+'``llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.[1-5]d``'
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax:
+"""""""
+
+.. code-block:: llvm
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.1d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.2d(..., i32 %d0, i32 %d1, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.gather4.2d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %x0, i32 %y0, i32 %y1, i32 %y2, i32 %y3, i64 %ch, i1 %flag_ch)
+
+Overview:
+"""""""""
+
+The '``@llvm.nvvm.cp.async.bulk.tensor.g2s.cta.tile.[1-5]d``' intrinsics
+correspond to the ``cp.async.bulk.tensor.[1-5]d.shared::cta.global.*``
+set of PTX instructions. These instructions initiate an asynchronous
+copy of tensor data from global memory to shared::cta memory in
+``tile`` mode. In tile mode, the multi-dimensional layout of the
+source tensor is preserved at the destination. The dimension of the
+tensor data ranges from 1d to 5d with the coordinates specified
+by the ``i32 %d0 ... i32 %d4`` arguments. In ``tile.gather4`` mode,
+four rows in a 2D tensor are combined to form a single 2D destination
+tensor. The first coordinate ``i32 %x0`` denotes the column index
+followed by four coordinates indicating the four row-indices.
+So, this mode takes a total of 5 coordinates as input arguments.
+For more information on ``gather4`` mode, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-tiled-scatter4-gather4-modes>`_.
+
+* The last argument to these intrinsics is a boolean flag
+ indicating support for cache_hint. This flag argument must
+ be a compile-time constant. When set, it indicates a valid
+ cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
+ variant of the PTX instruction.
+
+For more information, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
+
+'``llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.[3-5]d``'
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax:
+"""""""
+
+.. code-block:: llvm
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i64 %ch, i1 %flag_ch)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.w.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %wHalo, i16 %wOffset, i64 %ch, i1 %flag_ch)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.w.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.w.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.w.128.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %wHalo, i16 %wOffset, i64 %ch, i1 %flag_ch)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.w.128.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.w.128.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
+Overview:
+"""""""""
+
+The '``@llvm.nvvm.cp.async.bulk.tensor.g2s.cta.im2col.[3-5]d``' intrinsics
+correspond to the ``cp.async.bulk.tensor.[1-5]d.shared::cta.global.*``
+set of PTX instructions. These instructions initiate an asynchronous copy
+of tensor data from global memory to shared::cta memory in ``im2col`` mode.
+In im2col mode, some dimensions of the source tensor are unrolled into a
+single dimensional column at the destination. In this mode, the tensor has
+to be at least three-dimensional. Along with the tensor coordinates, im2col
+offsets are also specified (denoted by ``i16 im2col0...i16 %im2col2``).
+For the ``im2col`` mode, the number of offsets is two less than the number
+of dimensions of the tensor operation. For the ``im2col.w`` and ``im2col.w.128``
+mode, the number of offsets is always 2, denoted by ``i16 %wHalo`` and
+``i16 %wOffset`` arguments. For more information on ``im2col.w`` and
+``im2col.w.128`` modes, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-im2col-w-w128-modes>`_.
+
+* The last argument to these intrinsics is a boolean flag
+ indicating support for cache_hint. This flag argument must
+ be a compile-time constant. When set, it indicates a valid
+ cache_hint (``i64 %ch``) and generates the ``.L2::cache_hint``
+ variant of the PTX instruction.
For more information, refer PTX ISA
`<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor>`_.
@@ -1153,6 +1264,8 @@ Syntax:
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.scatter4.2d(ptr addrspace(3) %src, ptr %tensor_map, i32 %x0, i32 %y0, i32 %y1, i32 %y2, i32 %y3, i64 %ch, i1 %flag_ch)
+
Overview:
"""""""""
@@ -1162,6 +1275,12 @@ These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the ``s2g`` prefix)
in ``tile`` mode. The dimension of the tensor data ranges from 1d to 5d
with the coordinates specified by the ``i32 %d0 ... i32 %d4`` arguments.
+In ``tile.scatter4`` mode, a single 2D source tensor is divided into
+four rows in the 2D destination tensor. The first coordinate ``i32 %x0``
+denotes the column index followed by four coordinates indicating the
+four row-indices. So, this mode takes a total of 5 coordinates as input arguments.
+For more information on ``scatter4`` mode, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-tiled-scatter4-gather4-modes>`_.
* The last argument to these intrinsics is a boolean flag
indicating support for cache_hint. This flag argument must
@@ -1214,6 +1333,8 @@ Syntax:
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.gather4.2d(ptr %tensor_map, i32 %x0, i32 %y0, i32 %y1, i32 %y2, i32 %y3, i64 %ch, i1 %flag_ch)
+
Overview:
"""""""""
@@ -1225,6 +1346,13 @@ multi-dimensional layout of the source tensor is preserved at the destination.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the ``i32 %d0 ... i32 %d4`` arguments.
+In ``tile.gather4`` mode, four rows in the 2-dimnesional source tensor are
+fetched to the L2 cache. The first coordinate ``i32 %x0`` denotes the column index
+followed by four coordinates indicating the four row-indices. So, this mode takes
+a total of 5 coordinates as input arguments.
+For more information on ``gather4`` mode, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-tiled-scatter4-gather4-modes>`_.
+
* The last argument to these intrinsics is a boolean flag
indicating support for cache_hint. This flag argument must
be a compile-time constant. When set, it indicates a valid
@@ -1246,6 +1374,14 @@ Syntax:
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.3d(ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %wHalo, i16 %wOffset, i64 %ch, i1 %flag_ch)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.3d(ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %wHalo, i16 %wOffset, i64 %ch, i1 %flag_ch)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
+ declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.w.128.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
+
Overview:
"""""""""
@@ -1256,9 +1392,16 @@ of tensor data from global memory to the L2 cache. In im2col mode, some
dimensions of the source tensor are unrolled into a single dimensional
column at the destination. In this mode, the tensor has to be at least
three-dimensional. Along with the tensor coordinates, im2col offsets are
-also specified (denoted by ``i16 im2col0...i16 %im2col2``). The number
-of im2col offsets is two less than the number of dimensions of the tensor
-operation. The last argument to these intrinsics is a boolean flag, with
+also specified (denoted by ``i16 im2col0...i16 %im2col2``). For ``im2col``
+mode, the number of offsets is two less than the number of dimensions of
+the tensor operation. For the ``im2col.w`` and ``im2col.w.128`` modes,
+the number of offsets is always 2, denoted by ``i16 %wHalo`` and
+``i16 %wOffset`` arguments. For more information on ``im2col.w`` and
+``im2col.w.128`` modes, refer PTX ISA
+`<https://docs.nvidia.com/cuda/parallel-thread-execution/#tensor-im2col-w-w128-modes>`_.
+
+
+The last argument to these intrinsics is a boolean flag, with
the same functionality as described in the ``tile`` mode intrinsics above.
For more information, refer PTX ISA
diff --git a/llvm/include/llvm/IR/IntrinsicsNVVM.td b/llvm/include/llvm/IR/IntrinsicsNVVM.td
index 0375f29ad8906..5ddc14445908b 100644
--- a/llvm/include/llvm/IR/IntrinsicsNVVM.td
+++ b/llvm/include/llvm/IR/IntrinsicsNVVM.td
@@ -2024,9 +2024,7 @@ foreach dim = 1...5 in {
tensor_dim_args, // actual tensor dims
[llvm_i64_ty]), // cache_hint
[llvm_i1_ty], // Flag for cache_hint
- [IntrConvergent,
- ReadOnly<ArgIndex<0>>, ReadOnly<ArgIndex<1>>,
- NoCapture<ArgIndex<0>>, NoCapture<ArgIndex<1>>]>;
+ [IntrConvergent, ReadOnly<ArgIndex<0>>, ReadOnly<ArgIndex<1>>]>;
// Intrinsics for TMA Copy with reduction
foreach red_op = ["add", "min", "max", "inc", "dec", "and", "or", "xor"] in
@@ -2037,18 +2035,31 @@ foreach dim = 1...5 in {
tensor_dim_args, // actual tensor dims
[llvm_i64_ty]), // cache_hint
[llvm_i1_ty], // Flag for cache_hint
- [IntrConvergent, ReadOnly<ArgIndex<0>>, ReadOnly<ArgIndex<1>>,
- NoCapture<ArgIndex<0>>, NoCapture<ArgIndex<1>>]>;
+ [IntrConvergent, ReadOnly<ArgIndex<0>>, ReadOnly<ArgIndex<1>>]>;
}
}
+// TMA S2G tile::scatter4
+def int_nvvm_cp_async_bulk_tensor_s2g_tile_scatter4_2d
+ : DefaultAttrsIntrinsicFlags<[],
+ !listconcat([llvm_shared_ptr_ty, // src_smem_ptr
+ llvm_ptr_ty], // tensormap_ptr
+ !listsplat(llvm_i32_ty, 5), // dims
+ [llvm_i64_ty]), // cache_hint
+ [llvm_i1_ty], // Flag for cache_hint
+ [IntrConvergent, ReadOnly<ArgIndex<0>>, ReadOnly<ArgIndex<1>>]>;
+
// TMA Tensor Copy Intrinsics: G2S -> From Global to Shared memory variants
foreach dim = 1...5 in {
defvar tensor_dim_args = !listsplat(llvm_i32_ty, dim);
- foreach mode = !if(!ge(dim, 3), ["tile", "im2col"], ["tile"]) in {
+ foreach mode = !if(!ge(dim, 3), ["tile", "im2col", "im2col_w", "im2col_w_128"], ["tile"]) in {
defvar is_im2col = !eq(mode, "im2col");
- defvar num_im2col_offsets = !if(is_im2col, !add(dim, -2), 0);
+ defvar is_im2colw = !or(!eq(mode, "im2col_w"), !eq(mode, "im2col_w_128"));
+
+ // For im2col_w/w128 modes, the num_offsets is always 2.
+ // For im2col mode, the num_offsets is (dim - 2).
+ defvar num_im2col_offsets = !if(is_im2colw, 2, !if(is_im2col, !add(dim, -2), 0));
defvar im2col_offsets_args = !listsplat(llvm_i16_ty, num_im2col_offsets);
defvar g2s_params = !listconcat(
@@ -2079,11 +2090,60 @@ foreach dim = 1...5 in {
im2col_offsets_args, // im2col offsets
[llvm_i64_ty]), // cache_hint
[llvm_i1_ty], // Flag for cache_hint
- [IntrConvergent,
- ReadOnly<ArgIndex<0>>, NoCapture<ArgIndex<0>>]>;
+ [IntrConvergent, ReadOnly<ArgIndex<0>>]>;
+
+ def int_nvvm_cp_async_bulk_tensor_g2s_cta_ # mode # _ # dim # d :
+ DefaultAttrsIntrinsicFlags<[],
+ !listconcat([llvm_shared_ptr_ty, // dst_ptr
+ llvm_shared_ptr_ty, // mbarrier_ptr
+ llvm_ptr_ty], // tensormap_ptr
+ tensor_dim_args, // actual tensor dims
+ im2col_offsets_args, // im2col offsets
+ [llvm_i64_ty]), // cache_hint
+ [llvm_i1_ty], // Flag for cache_hint
+ [IntrConvergent, WriteOnly<ArgIndex<0>>, ReadOnly<ArgIndex<2>>]>;
}
}
+// TMA copy for tile::gather4
+def int_nvvm_cp_async_bulk_tensor_g2s_tile_gather4_2d
+ : DefaultAttrsIntrinsicFlags<[],
+ !listconcat(
+ [llvm_shared_cluster_ptr_ty, // dst_shared_cluster_ptr
+ llvm_shared_ptr_ty, // mbarrier_ptr
+ llvm_ptr_ty], // tensormap_ptr
+ !listsplat(llvm_i32_ty, 5), // co-ordinates
+ [llvm_i16_ty, // cta_mask
+ llvm_i64_ty]), // cache_hint
+ [llvm_i1_ty, // Flag for cta_mask
+ llvm_i1_ty, // Flag for cache_hint
+ llvm_i32_ty], // Flag for cta_group
+ [IntrConvergent,
+ WriteOnly<ArgIndex<0>>, ReadOnly<ArgIndex<2>>,
+ // Allowed values for cta_group are {0,1,2} i.e [0, 3).
+ Range<ArgIndex<12>, 0, 3>]>;
+
+def int_nvvm_cp_async_bulk_tensor_g2s_cta_tile_gather4_2d
+ : DefaultAttrsIntrinsicFlags<[],
+ !listconcat(
+ [llvm_shared_ptr_ty, // dst_shared_ptr
+ llvm_shared_ptr_ty, // mbarrier_ptr
+ llvm_ptr_ty], // tensormap_ptr
+ !listsplat(llvm_i32_ty, 5), // co-ordinates
+ [llvm_i64_ty]), // cache_hint
+ [llvm_i1_ty], // Flag for cache_hint
+ [IntrConvergent,
+ WriteOnly<ArgIndex<0>>, ReadOnly<ArgIndex<2>>]>;
+
+// TMA prefetch for tile::gather4
+def int_nvvm_cp_async_bulk_tensor_prefetch_tile_gather4_2d
+ : DefaultAttrsIntrinsicFlags<[],
+ !listconcat([llvm_ptr...
[truncated]
|
Ping, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM overall, with few nits.
This patch adds support for the following modes in the TMA intrinsics: * TMA G2S Copy: im2col_w, im2col_w_128 and tile_gather4_2d. * TMA Prefetch: im2col_w, im2col_w_128 and tile_gather4_2d. * TMA S2G Copy: tile_scatter4_2d mode * TMA G2S-CTA copy: tile, im2col, im2col_w, im2col_w_128 and tile_gather4_2d. Signed-off-by: Durgadoss R <[email protected]>
b942c3d
to
994a8c6
Compare
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/3/builds/19252 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/63/builds/7950 Here is the relevant piece of the build log for the reference
|
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/52/builds/9796 Here is the relevant piece of the build log for the reference
|
This patch adds support for the im2col-w/w128 and scatter/gather modes
for TMA Copy and Prefetch intrinsics, completing support for all the
available modes. These are lowered through tablegen, building
on top of earlier patches.
12.8 ptxas executable.